BufferPool + Redolog 日志 避免随机写
内存的数据页是在 Buffer Pool (BP) 中管理的,在 WAL 里 Buffer Pool 起到了加速更新的作用。而实际上,Buffer Pool 还有一个更重要的作用,就是加速查询。
区有同学问道,由于有 WAL 机制,当事务提交的时候,磁盘上的数据页是旧的,那如果这时候马上有一个查询要来读这个数据页,是不是要马上把 redo log 应用到数据页呢?
答案是不需要。因为这时候内存数据页的结果是最新的,直接读内存页就可以了。
BufferPool 内存命中率
Buffer Pool 对查询的加速效果,依赖于一个重要的指标,即:内存命中率。
你可以在 show engine innodb status 结果中,查看一个系统当前的 BP 命中率。一般情况下,一个稳定服务的线上系统,要保证响应时间符合要求的话,内存命中率要在 99% 以上。
执行 show engine innodb status ,可以看到 Buffer pool hit rate 字样,显示的就是当前的命中率。比如图 5 这个命中率,就是 99.0%。
如果所有查询需要的数据页都能够直接从内存得到,那是最好的,对应的命中率就是 100%。但,这在实际生产上是很难做到的。
InnoDB Buffer Pool 的大小是由参数 innodb_buffer_pool_size 确定的,一般建议设置成可用物理内存的 60%~80%。
在大约十年前,单机的数据量是上百个 G,而物理内存是几个 G;现在虽然很多服务器都能有 128G 甚至更高的内存,但是单机的数据量却达到了 T 级别。
所以,innodb_buffer_pool_size 小于磁盘的数据量是很常见的。如果一个 Buffer Pool 满了,而又要从磁盘读入一个数据页,那肯定是要淘汰一个旧数据页的。
InnoDB 内存管理用的是最近最少使用 (Least Recently Used, LRU) 算法,这个算法的核心就是淘汰最久未使用的数据。
BufferPool 的 LRU 机制
下图是一个 LRU 算法的基本模型。

InnoDB 管理 Buffer Pool 的 LRU 算法,是用链表来实现的。
- 在图 6 的状态 1 里,链表头部是 P1,表示 P1 是最近刚刚被访问过的数据页;假设内存里只能放下这么多数据页;
- 这时候有一个读请求访问 P3,因此变成状态 2,P3 被移到最前面;
- 状态 3 表示,这次访问的数据页是不存在于链表中的,所以需要在 Buffer Pool 中新申请一个数据页 Px,加到链表头部。但是由于内存已经满了,不能申请新的内存。于是,会清空链表末尾 Pm 这个数据页的内存,存入 Px 的内容,然后放到链表头部。
- 从效果上看,就是最久没有被访问的数据页 Pm,被淘汰了。
这个算法乍一看上去没什么问题,但是如果考虑到要做一个全表扫描,会不会有问题呢?
假设按照这个算法,我们要扫描一个 200G 的表,而这个表是一个历史数据表,平时没有业务访问它。
那么,按照这个算法扫描的话,就会把当前的 Buffer Pool 里的数据全部淘汰掉,存入扫描过程中访问到的数据页的内容。也就是说 Buffer Pool 里面主要放的是这个历史数据表的数据。
对于一个正在做业务服务的库,这可不妙。你会看到,Buffer Pool 的内存命中率急剧下降,磁盘压力增加,SQL 语句响应变慢。
所以,InnoDB 不能直接使用这个 LRU 算法。实际上,InnoDB 对 LRU 算法做了改进。
优化后的 LRU 机制

在 InnoDB 实现上,按照 5:3 的比例把整个 LRU 链表分成了 young 区域和 old 区域。图中 LRU_old 指向的就是 old 区域的第一个位置,是整个链表的 5/8 处。也就是说,靠近链表头部的 5/8 是 young 区域,靠近链表尾部的 3/8 是 old 区域。
改进后的 LRU 算法执行流程变成了下面这样。
- 图 7 中状态 1,要访问数据页 P3,由于 P3 在 young 区域,因此和优化前的 LRU 算法一样,将其移到链表头部,变成状态 2。
- 之后要访问一个新的不存在于当前链表的数据页,这时候依然是淘汰掉数据页 Pm,但是新插入的数据页 Px,是放在 LRU_old 处。
- 处于 old 区域的数据页,每次被访问的时候都要做下面这个判断:
- 若这个数据页在 LRU 链表中存在的时间超过了 1 秒,就把它移动到链表头部;
- 如果这个数据页在 LRU 链表中存在的时间短于 1 秒,位置保持不变。1 秒这个时间,是由参数 innodb_old_blocks_time 控制的。其默认值是 1000,单位毫秒。
这个策略,就是为了处理类似全表扫描的操作量身定制的。还是以刚刚的扫描 200G 的历史数据表为例,我们看看改进后的 LRU 算法的操作逻辑:
-
扫描过程中,需要新插入的数据页,都被放到 old 区域 ;
-
一个数据页里面有多条记录,这个数据页会被多次访问到,但由于是顺序扫描,这个数据页第一次被访问和最后一次被访问的时间间隔不会超过 1 秒,因此还是会被保留在 old 区域;
-
再继续扫描后续的数据,之前的这个数据页之后也不会再被访问到,于是始终没有机会移到链表头部(也就是 young 区域),很快就会被淘汰出去。
可以看到,这个策略最大的收益,就是在扫描这个大表的过程中,虽然也用到了 Buffer Pool,但是对 young 区域完全没有影响,从而保证了 Buffer Pool 响应正常业务的查询命中率。