思维链 CoT
思维链 CoT:Chain of Thought,
Few-shot-CoT:
Zero-shot-CoT:
# 设置环境变量和API密钥
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'
# 创建聊天模型
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)
# 设定 AI 的角色和目标
role_template = "你是一个为花店电商公司工作的AI助手, 你的目标是帮助客户根据他们的喜好做出明智的决定"
# CoT 的关键部分,AI 解释推理过程,并加入一些先前的对话示例(Few-Shot Learning)
cot_template = """
作为一个为花店电商公司工作的AI助手,我的目标是帮助客户根据他们的喜好做出明智的决定。
我会按部就班的思考,先理解客户的需求,然后考虑各种鲜花的涵义,最后根据这个需求,给出我的推荐。
同时,我也会向客户解释我这样推荐的原因。
示例 1:
人类:我想找一种象征爱情的花。
AI:首先,我理解你正在寻找一种可以象征爱情的花。在许多文化中,红玫瑰被视为爱情的象征,这是因为它们的红色通常与热情和浓烈的感情联系在一起。因此,考虑到这一点,我会推荐红玫瑰。红玫瑰不仅能够象征爱情,同时也可以传达出强烈的感情,这是你在寻找的。
示例 2:
人类:我想要一些独特和奇特的花。
AI:从你的需求中,我理解你想要的是独一无二和引人注目的花朵。兰花是一种非常独特并且颜色鲜艳的花,它们在世界上的许多地方都被视为奢侈品和美的象征。因此,我建议你考虑兰花。选择兰花可以满足你对独特和奇特的要求,而且,兰花的美丽和它们所代表的力量和奢侈也可能会吸引你。
"""
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
system_prompt_role = SystemMessagePromptTemplate.from_template(role_template)
system_prompt_cot = SystemMessagePromptTemplate.from_template(cot_template)
# 用户的询问
human_template = "{human_input}"
human_prompt = HumanMessagePromptTemplate.from_template(human_template)
# 将以上所有信息结合为一个聊天提示
chat_prompt = ChatPromptTemplate.from_messages([system_prompt_role, system_prompt_cot, human_prompt])
prompt = chat_prompt.format_prompt(human_input="我想为我的女朋友购买一些花。她喜欢粉色和紫色。你有什么建议吗?").to_messages()
# 接收用户的询问,返回回答结果
response = llm(prompt)
print(response)
思维链 ToT
思维树 ToT:Tree of Thought,是一种解决复杂问题的框架,它在需要多步骤推理的任务中,引导语言模型搜索一棵由连贯的语言序列(解决问题的中间步骤)组成的思维树,而不是简单地生成一个答案。ToT 框架的核心思想是:让模型生成和评估其思维的能力,并将其与搜索算法(如广度优先搜索和深度优先搜索)结合起来,进行系统性地探索和验证。
ToT 框架为每个任务定义具体的思维步骤和每个步骤的候选项数量。例如,要解决一个数学推理任务,先把它分解为 3 个思维步骤,并为每个步骤提出多个方案,并保留最优的 5 个候选方案。然后在多条思维路径中搜寻最优的解决方案。
这种方法的优势在于,模型可以通过观察和评估其自身的思维过程,更好地解决问题,而不仅仅是基于输入生成输出。这对于需要深度推理的复杂任务非常有用。此外,通过引入强化学习、集束搜索等技术,可以进一步提高搜索策略的性能,并让模型在解决新问题或面临未知情况时有更好的表现。
GitHub上开了一个 Repo,专门给大家介绍 ToT 的应用方法和实例,他们还给出了几个非常简单的通用 ToT 提示语,就像下面这样。
请你模拟三位出色、逻辑性强的专家合作回答一个问题。每个人都详细地解释他们的思考过程,考虑到其他人之前的解释,并公开承认错误。在每一步,只要可能,每位专家都会在其他人的思考基础上进行完善和建设,并承认他们的贡献。他们继续,直到对问题有一个明确的答案。为了清晰起见,您的整个回应应该是一个 Markdown 表格。
问题是…